

AS Mathematics

MPC1 – Pure Core 1 Mark scheme

6360 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment	
	$y = \pm \frac{5}{3}x + \dots$	M1	Total	Comment	
	$m = -\frac{5}{3}$	A1	2	$y = -\frac{5}{3}x - 1$ for guidance <u>must</u> see $m = \dots$ or statement such as " <i>AB</i> has gradient $-\frac{5}{3}$ so line parallel to <i>AB</i> also has gradient $-\frac{5}{3}$."	
(b)	$5x+3y+3=0 & 3x-2y+17=0 \\ eg & 10x+6+9x+51=0 \end{cases}$	M1		correct equations used and correct elimination of x or y eg $19x + 57 = 0$ or $19y - 76 = 0$ etc	
	$x = -3$ or $x = -\frac{57}{19}$ or $y = 4$ or $y = \frac{76}{19}$	A1		either <i>x</i> or <i>y</i> correct in any equivalent form	
	{both $x = -3$ and $y = 4$ } or (-3, 4)	A1	3	both coordinates written as integers	
(c)	5(2k+3)+3(4-3k)+3=0 10k+15 + 12-9k + 3=0 k = -30	M1 A1	2	correct substitution into correct equation & correct expansion of brackets	
	Total		7		
(a)	Do not penalise incorrect rearrangement if $m = -\frac{5}{3}$ is stated.				
(b)	Example $y = -\frac{5}{3}x - 3$ so $m = -\frac{5}{3}$ scores M1 A1 NMS $m = -\frac{5}{3}$ earns 2 marks. NMS $-\frac{5}{3}$ earns M1 A0 . NMS $(m =) \frac{5}{3}$ earns M1 A0 . NMS Award M1 A0 only for " $m = -\frac{5}{3}x$ ". $5\left(\frac{2y}{3}-\frac{17}{3}\right)+3y+3=0$ earns M1, however $5\left(\frac{2y}{3}+\frac{17}{3}\right)+3y+3=0$, for example, scores M0. Other examples scoring M1 are $3x-2\left(-\frac{5}{3}x-1\right)+17=0$; $-\frac{5}{3}x-1=\frac{3}{2}x+\frac{17}{2}$ Accept any correct equivalent fraction for first A1 but must have both $x = -3$ and $y = 4$ for final A1. NMS $(-3,4)$ scores 3 marks				

Q2	Solution	Mark	Total	Comment
(a)	45	B1	1	
(b)	$\frac{**+\sqrt{5}}{7+3\sqrt{5}} \times \frac{7-3\sqrt{5}}{7-3\sqrt{5}}$	M1		
	(Numerator =) $315 + 7\sqrt{5} - 135\sqrt{5} - 15$	A1		at least this far
	(Denominator = $49 + 21\sqrt{5} - 21\sqrt{5} - 45$) = 4 $300 - 128\sqrt{5}$	B1		must be seen as denominator
	Value = $\frac{300 - 128\sqrt{5}}{4}$ = $75 - 32\sqrt{5}$	A1cso	4	
	Total		5	
(b)	NO MISREADS ALLOWED IN THIS QUE Condone multiplication by $7-3\sqrt{5}$ instead multiplication by both numerator and denon For first A1 45×7, 45×3 and 3×5 must be An error in the denominator such as 49+7 automatically lose the final A1cso May use alternative conjugate $\times \frac{3\sqrt{5}-7}{3\sqrt{5}-7}$ M	of $\times \frac{7-3}{7-3}$ ninator – co be evaluat	$\frac{\sqrt{5}}{\sqrt{5}}$ for M otherwise ed correct -45=4 s	M0 tly hould be given B0 and it would then

Q3	Solution	Mark	Total	Comment
(a)(i)	$\left(x-\frac{7}{2}\right)^2\dots$	M1		$(x-3.5)^2$ OE $(x-3.5)^2 - 10.25$
	$\left(x-\frac{7}{2}\right)^2-\frac{41}{4}$	A1	2	$(x-3.5)^2-10.25$
(ii)	(Minimum value =) -10.25 OE	B1F	1	must FT their q
(b)	Translation	E1		or translate(d) (by/through)
	$\begin{bmatrix} 0.5\\ * \end{bmatrix}$	M1		(and no other transformation given)
	$\begin{bmatrix} 0.5\\10.25\end{bmatrix}$	A1	3	must express as vector to earn A1 mark
	Total		6	
(a)(i)	If M1 is not earned, award SC1 for $\left(x - \frac{7}{2}\right)$	$-\frac{41}{4}$		
(ii)	Do NOT accept any pair of values. Examp Condone $y = "their"q$ for B1 but $x = "their"$			bres B0 since this is hedging bets
(b)	Do NOT accept "shift", "move", "slide", "the Accept "0.5 in <i>x</i> -direction", " $\frac{1}{2}$ to the right			

Q4	Solution	Mark	Total	Comment	
(-)(!)					
(a)(i)	$(p(-3)) = (-3)^3 - 5(-3)^2 - 8(-3) + 48$	M1		clear attempt at $p(-3)$ NOT long division	
	= -27 - 45 + 24 + 48			must see powers of -3 simplified correctly	
	therefore $x + 3$ is a factor	A1	2	working showing that $p(-3)=0$ and correct statement	
(ii)	$x^{2} + bx + c$ with $b = -8$ or $c = 16$	M1		by inspection	
	$x^2 - 8x + 16$	A1		may see as quotient in long division	
	(p(x) =) $(x+3)(x-4)(x-4)$	A1	3	must see product	
(b)(i)	$p(2) = 2^3 - 5 \times 2^2 - 8 \times 2 + 48$	M1		clear attempt at p(2) NOT long division	
	= 8-20-16+48	. 1	2		
	(Remainder =) 20	A1	2		
(ii)	Quadratic factor $x^2 + bx + c$				
	b = -3 or $c = -14$	M1		by inspection	
	$x^2 - 3x - 14$	A1	2	may see as quotient in long division	
	$(p(x) =)$ $(x-2)(x^2-3x-14)+20$	A1	3	must see full correct expression	
	Total		10		
(-)(!)		••			
(a)(i)	Minimum required for statement is "∴ fact Powers of –3 must be evaluated: Example "		-27-45+	-24+48 = 0 so factor" scores M1 A1	
	Powers of -3 must be evaluated: Example "p(-3) = $-27 - 45 + 24 + 48 = 0$ so factor" scores M1 A1 Statement may appear first :				
	Example " $x+3$ is factor if $p(-3) = 0 \& p(-3) = 0 \& p(-3) = 0 \& p(-3) = 0 \& p(-3) $				
	However, Example " $p(-3) = (-3)^3 - 5(-3)^3$	$(-3)^{2} - 8(-3)^{3}$	+48 = 0	therefore $x+3$ is a factor" scores M1 A0	
(ii)	M1 may also be earned for a full long divisi	on attemr	ot by $(x+3)$), or a clear attempt to find a value for both	
()	b and c (even though incorrect) by comparing	ng coeffici	ients .	~ -	
	M1 may also be earned for <i>showing</i> $p(4) = 0$		i ng that ((x-4) is a factor	
	NMS $p(x) = (x+3)(x-4)^2$ scores 3 marks ;				
(b)(i)	Do not apply ISW for eg " $p(2) = 20$, therefore remainder is -20 "				
	May use "their" product of factors $p(2) = (2)$	(2+3)(2-4)	4)(2-4)	for M1 and A1 if factors and working are all	
	correct giving 20.				
(ii)					
	c (even though incorrect) by comparing coefficients. M1 may also be earned for using their value from part (b)(i) for r and a full attempt to find b and c .				
	with may also be carried for using their value from part (b)(i) for r and a full attempt to find b and c.				

Q5	Solution	Mark	Total	Comment	
		Mark	Total		
(a)	$(x-5)^2 + (y+3)^2 = \dots$	M1		or $(x-5)^2 + (y3)^2 = \dots$	
	$7^2 + 4^2$ or $49 + 16$ or 65	B 1		or seen under square root	
	$(x-5)^2 + (y+3)^2 = 65$	A1	3	or $(x-5)^2 + (y3)^2 = 65$	
(1)	$(x-5)^{2} + (y+3)^{2} =$ $7^{2} + 4^{2}$ or $49 + 16$ or 65 $(x-5)^{2} + (y+3)^{2} = 65$ $x_{B} = 12$	D1			
(d)	$x_B = 12$	B1	2	R(12 7)	
	$y_B = -7$	B 1	2	<i>B</i> (12,-7)	
	-1+c 13	N/T1		condone one sign error in one term	
(C)	$\operatorname{Grad} AC = \frac{1 - 3}{-2 - 5}$	M1		FT their B if grad AB or grad BC is used.	
	$= -\frac{4}{7}$	A1			
	1				
	Grad tgt = $\frac{7}{4}$	B1F			
		_		7	
	Equation of tgt: $y-1 = "their"\frac{7}{4}(x-2)$	m1		or $y = "their" \frac{7}{4}x + c$ & attempt to find c	
				using $x = -2$ and $y = 1$	
	7x - 4y + 18 = 0	A1	5	any multiple – must have integer	
				coefficients and all terms on one side	
(d)	$CT^2 = AT^2 + AC^2$				
	$(CT^{2} =)$ 4 ² + " <i>their</i> "65 $(CT^{2} =)$ 81	M1		Pythagoras with hyp=CT	
				& $AC^2 = "their" k$ or correct	
	$(CT^2 =)$ 81	A1		or $(CT =)\sqrt{81}$	
	(<i>CT</i> =)9	A1	3	all notation correct; must simplify $\sqrt{81}$	
			40		
	Total		13		
(a)	NMS $(x-5)^2 + (y+3)^2 = 65$ scores 3 mar	ks			
	allow RHS = $(\sqrt{65})^2$ instead of 65 for full marks				
	Example: $(x-5)^2 + (y+3)^2 = \sqrt{65}$ earns N			2^{2} (5.4 m 1 m 1	
	Equation of circle must be written explicitly	as $(x-5)$) + (y + z)	$S_{1} = 65$ to earn AI mark	
(c)	Award M1 A0 for grad $AC = 4/7$				
	For m1 candidate must be attempting equati			-	
	then award m1 if using $1/m$ or $-m$ and correct For final A1 accept answers such as $0 = 8y$.				
	1 or mar Ar accept answers such as $0-6y$	$1 + \lambda = 30$		-10	
(d)	Example: $4^2 + 65 = 81 = 9$ scores M1 , A1 ,	A0 ; Exa	nple: 4 ²	$+65=81, \sqrt{81}=9$ scores M1 , A1 , A1	
		-	-		

Q6	Solution	Mark	Total	Comment	
	$(x=) \frac{4 \pm \sqrt{80}}{-4} , \text{ or } (x=) \frac{-4 \pm \sqrt{80}}{4}$ $\text{or} (x=) \frac{-2 \pm \sqrt{20}}{2}$	M1		if completing square must have at least $x+1=\pm\sqrt{5}$	
	$(x=) -1\pm\sqrt{5}$	A1	2	do not accept $-1 \pm -\sqrt{5}$ for A1	
(ii)		M1 A1	2	\bigwedge shape as shown in all 4 quadrants , max to left of y-axis with y-intercept 8 stated/marked	
(b)(i)	$k(x+4) = 8 - 4x - 2x^{2}$ $2x^{2} + kx + 4x + 4k - 8 = 0$ $2x^{2} + (k+4)x + 4(k-2) = 0$ $(k+4)^{2} - 4 \times 2 \times 4(k-2) (=0)$ $k^{2} - 24k + 80 (=0)$	B1	1	must expand $k(x+4)$ & have all terms on one side with =0 before final line AG be convinced	
(ii)	$(k+4)^2 - 4 \times 2 \times 4(k-2) (=0)$	M1		correct discriminant	
	$k^2 - 24k + 80 (=0)$	A1			
	k = 4, k = 20	A1cso	3		
	Total		8		
(a)(ii)	Withhold A1 if maximum y- value is clearly not greater than 8, or graph has wrong curvature in third and fourth quadrants. Do not withhold A1 if incorrect x-intercepts are marked on x-axis, etc. Accept $(0,8)$ stated or marked on y-axis as y-intercept, but do NOT accept $(8,0)$.				
(b)(i)	Must have "=0" on final line but this may be on LHS. Do not accept incorrect "trailing equal" signs, ie from line 1 to line 2 of proof.				
(ii)	Condone poor use/omission of brackets for then be earned even if recovered later. Cand statement " $b^2 - 4ac = 0$ " and all working conditional of the statement " $b^2 - 4ac = 0$ " and all working conditional of the statement (1) and (1) an	idates mu orrect to e	st have "₌ arn A1cs e	= 0" on at least one line of working or 0.	

Q7	Solution	Mark	Total	Comment	
		M1	Total	one term correct	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -2x - 9x^2$	A1		all correct (no +c etc)	
	when $x = -2$, $\frac{dy}{dx} = (4 - 36 =) - 32$	A1			
	y = " <i>their</i> - 32" $x + c$ & attempt to find $cusing x = -2 and y = 24$	m1		or $y - 24 = "their - 32"(x2)$	
	y = -32x - 40	A1	5	must write in this form; no ISW here	
(ii)	$y=0 \Longrightarrow x=-\frac{5}{4}$ OE	B1F	1	strict FT from their answer to (a)(i)	
(b)(i)	$4x - \frac{x^3}{3} - \frac{3x^4}{4}(+c)$	M1 A1		two terms correct all correct	
	$\begin{bmatrix} 4 \times 1 - \frac{1^3}{3} - \frac{3 \times 1^4}{4} \end{bmatrix} - \begin{bmatrix} 4 \times (-2) - \frac{(-2)^3}{3} - \frac{3(-2)^4}{4} \end{bmatrix}$	m1		"their" F(1) – F(–2)	
	$\begin{bmatrix} 1 & (2) & 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 4 & -\frac{1}{3} & -\frac{3}{4} \end{bmatrix} - \begin{bmatrix} -8 & +\frac{8}{3} & -\frac{48}{4} \end{bmatrix}$	A1		correct with powers of 1 and (–2) and minus signs handled correctly	
	$=20\frac{1}{4}$	A1	5	20.25 , $\frac{81}{4}$, $\frac{243}{12}$ OE	
(ii)	Area of missing triangle = $\left(\frac{1}{2} \times 24 \times \frac{3}{4}\right)$ 9	B1		or correct single equivalent fraction	
	Area of region = "their"(b)(i) – "their" Δ	M1		"their" $(20\frac{1}{4}-9)$ 45 135	
	$=11\frac{1}{4}$	A1	3	11.25 , $\frac{45}{4}$, $\frac{135}{12}$ OE	
	Total		14		
(a)(i)	Must see $y = -32x - 40$ explicitly for final A1; ie not enough to see $y = -32x + c$ with $c = -40$ appearing on later line.				
(a)(ii)	Allow $-\frac{40}{32}$ etc.				
(b)(i)	32 Must combine terms for final A1; Example $\dots 3\frac{1}{4} + 17$ scores final A0.				
(ii)	Must combine terms for final A1, Example $\dots 5_{4} + 17$ scores final A0. May find triangle area by considering trapezium with one side of zero length or integration for B1. For M1 condone use of "their" Δ –"their"(b)(i) if appropriate for their values. Be generous in awarding this M1 provided you are convinced they are considering the area of a triangle.				

FINAL MARK SCHEME – AS MATHEMATICS – MPC1 – JUNE 2016

Q8	Solution	Mark	Total	Comment		
(-)(!)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 27 - 12x$	M1 A1	2	one term correct all correct (no $+c$ etc)		
(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 54 + 27 \times \left(-\frac{3}{2}\right) - 6 \times \left(-\frac{3}{2}\right)^2$	M1				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 54 - \frac{81}{2} - \frac{54}{4} = 0$	A1		convincingly showing $\frac{dy}{dx} = 0$ and $\frac{dy}{dx} =$ must appear on at least one line		
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 27 - 12 \times \left(\frac{-3}{2}\right)$	M1		correct substitution into "their" $\frac{d^2 y}{dx^2}$		
	$\frac{d^2 y}{dx^2} = 27 + 18 \ (= \ 45) > 0$			correct working and $\frac{d^2 y}{dx^2}$ used and value		
	\Rightarrow <i>P</i> is minimum point	A1cso	4	shown to be > 0 with correct statement(s) must earn 3 previous marks to earn A1cso		
(b)(i)	(Decreasing so) $54 + 27x - 6x^2 < 0$ $6x^2 - 27x - 54 > 0$	M1				
	$2x^2 - 9x - 18 > 0$	A1	2	AG be convinced		
(ii)	(2x+3)(x-6)	M1		correct factors or correct use of formula as far as $\frac{9 \pm \sqrt{225}}{4}$		
	CVs are $x = -\frac{3}{2}, x = 6$	A1		condone equivalent fractions here		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		use of sign diagram or graph $-3/2 \qquad 6$		
	$x < -\frac{3}{2}, x > 6$	A1	4	fractions must be simplified for final mark no ISW here		
	Total		12			
(b)(ii)	For second M1 , if critical values are correct then sign diagram or sketch must be correct <i>with correct CVs marked</i> . However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but <i>their CVs</i> MUST be marked on the diagram or sketch. Final A1 , inequality must have x and no other letter.					
	Final answer of $x < -\frac{3}{2}$ OR $x > 6$ (w					
	(A) $k < -\frac{3}{2}$, $k > 6$ (B) $x < -\frac{3}{2}$ AN with or without working, each score 3 mark		(C)	$x \le -\frac{3}{2}, x \ge 6$		
	with or without working, each score 3 marks (SC3) Example NMS $x < \frac{3}{2}$, $x > 6$ scores M0 (since one CV is incorrect)					
	Example NNIS $x < \frac{1}{2}$, $x > 6$ scores NI	l U (since o	ne CV 1s	incorrect)		